博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
梯度下降算法以及其Python实现
阅读量:6081 次
发布时间:2019-06-20

本文共 4074 字,大约阅读时间需要 13 分钟。

一、梯度下降算法理论知识

我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系?

 

 

为了实现监督学习,我们选择采用自变量x1、x2的线性函数来评估因变量y值,得到:

 

 

这里,sita1、sita2代表自变量x1、x2的权重(weights),sita0代表偏移量。为了方便,我们将评估值写作h(x),令x0=1,则h(x)可以写作:

 

 

其中n为输入样本数的数量。为了得到weights的值,我们需要令我们目前的样本数据评估出的h(x)尽可能的接近真实y值。我们定义误差函数(cost function)来表示h(x)和y值相接近的程度:

 

 

这里的系数1/2是为了后面求解偏导数时可以与系数相互抵消。我们的目的是要误差函数尽可能的小,即求解weights使误差函数尽可能小。首先,我们随机初始化weigths,然后不断反复的更新weights使得误差函数减小,直到满足要求时停止。这里更新算法我们选择梯度下降算法,利用初始化的weights并且反复更新weights:

 

 

这里a代表学习率,表示每次向着J最陡峭的方向迈步的大小。为了更新weights,我们需要求出函数J的偏导数。首先计算只有一个数据样本(x,y)时,如何计算J的偏导数:

 

 

对于只含有一组数据的训练样本,我们可以得到更新weights的规则为:

 

 

扩展到多组数据样本,更新公式为:

 

 

称为批处理梯度下降算法,这种更新算法所需要的运算成本很高,尤其是数据量较大时。考虑下面的更新算法:

 

 

该算法又叫做随机梯度下降法,这种算法不停的更新weights,每次使用一个样本数据进行更新。当数据量较大时,一般使用后者算法进行更新。

二、梯度下降Python实现

自己创建了一组数据,存为csv格式,如下图所示:

 

 

待训练数据A、B为自变量,C为因变量。

在写程序之前,要先导入我们需要的模块。

首先将数据读入Python中,程序如下所示:

接下来将读取的数据分别得到自变量矩阵和因变量矩阵:

这里需要注意的是,在原有自变量的基础上,需要主观添加一个均为1的偏移量,即公式中的x0。原始数据的前n-1列再加上添加的偏移量组成自变量trainData,最后一列为因变量trainLabel。

下面开始实现批处理梯度下降算法:

x为自变量训练集,y为自变量对应的因变量训练集;theta为待求解的权重值,需要事先进行初始化;alpha是学习率;m为样本总数;maxIterations为最大迭代次数;

求解权重过程,初始化batchGradientDescent函数需要的各个参数:

alpha和maxIterations可以更改,之后带入到batchGradientDescent中可以求出最终权重值。

之后我们给出一组数据,需要进行预测,预测函数:

x为待预测值的自变量,thta为已经求解出的权重值,yPre为预测结果

我们给出测试集

 

 

对该组数据进行预测,程序如下:

输出结果如下:

我们可以更改学习率和迭代次数进行预测结果的对比:

更改学习率由0.05变为0.1时,结果为:

发现预测结果要由于学习率为0.05时,这说明学习率0.05选择的偏小,即每一次迈步偏小。

固定学习率为0.05,更改迭代次数为5000时,结果为:

这正是我们想要的预测结果,这说明有限循环次数内,循环次数越多,越接近真实值。但是也不能无限循环下去,需要寻找一个度。

一般达到以下的任意一种情况即可以停止循环:
1.权重的更新低于某个阈值;
2.预测的错误率低于某个阈值;
3.达到预设的最大循环次数;
其中达到任意一种,就停止算法的迭代循环,得出最终结果。
完整的程序如下:

我是一个机器学习的小白,刚刚开始接触,从最基本的也是很重要的梯度下降开始学习。这篇文章是我对梯度下降的理解,还有很多不完善的地方,我只给出了批量梯度下降算法的python实现,随机梯度下降还需要我进一步编写,而且关于循环停止,本文只是最简单的循环次数停止,等等,还有很多问题,以后会继续更近并改进该文章。写下来就是为了随时随地翻出来看看,巩固知识,并不断改进。

转载于:https://www.cnblogs.com/xyou/p/8175722.html

你可能感兴趣的文章
网络结构中,我们非得有汇聚交换机么?
查看>>
我的友情链接
查看>>
linux中rsync配置
查看>>
新手IT人员,如何找到适合自己专业书籍的6个问题?
查看>>
去除JSP主机默认的8080端口
查看>>
关系型数据库之mysql-proxy实现读写分离
查看>>
EMC模拟器下载
查看>>
3月移动设备占比TOP10:苹果冠军 红米晋身第五
查看>>
阿里巴巴Java开发 之 工程规约
查看>>
我的友情链接
查看>>
我是如何在12周内由零基础成为一名程序员的——记Matt程序员快速成长之路
查看>>
windows server免安装IIS强性能LAMP+memcached
查看>>
世界杯迄今最火的一场比赛 一文看懂世界杯背后的阿里云黑科技
查看>>
罗辑思维在全链路压测方面的实践和工作笔记
查看>>
机器对外扫描,重装了系统也不行,打补丁也不行,什么原因?
查看>>
基于OpenSSL自建CA和颁发SSL证书
查看>>
vagrant+phpStorm配置xdebug
查看>>
union和union all的区别
查看>>
编写Shell管理脚本(下)
查看>>
LoadRunner 测试脚本C语言常用函数
查看>>